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The torsionless affine field theory of Einstein 

C. GILBERT 
School of Mathematics, University of Newcastle upon Tyne 
iMS. received 25th March 1968, in revisedform 6th FebruarJl 1969 

Abstract. The affine field theory of a symmetric connection is based on a more 
general variational principle than was used by Einstein. The action density is a 
function of the Ricci tensor and a covariant vector field A,, which is determined 
by the connection. The terms in the field equations which depend explicitly on 
Ai are interpreted as charge-current 4-vectors. The field equations give a generaliza- 
tion of NIie’s theory of electrodynamics, and in a special case they correspond to 
Born’s non-linear equations of electrodynamics. A connection with Maxwell’s 
equations is also established in this case. 

The  static spherically symmetric field of an electron is described, and an inter- 
pretation of the solutions, which ascribes a structure to the electron, is briefly 
discussed. 

1. Introduction 

Einstein (1923) formulated a field theory based on the law of parallel displacement 
In  an early attempt to find a geometrical origin for gravitation and electromagnetism 

dB‘ = -17:.,Bfdxk (1) 
where x1 (i = 1, 2, 3, 4) are the coordinates of a four-dimensional affine space. Bi is a 
contravariant vector, and I?:, are coefficients of connection, which are symmetric for the 
interchange of j and K. Although the theory has mathematical elegance, it has not so far 
led to the discovery of any physically significant results. Eddington (1930) had the opinion 
that the theory did not lead along the direct route of real physical progress. Schrodinger 
also investigated the theory (Schrodinger 1943, 1944, 1947), but later abandoned it in 
favour of the much more intricate theory based on a connection with torsion. 

I n  the usual development of the symmetric theory (Eddington 1930, p. 257, Schrodinger 
1943) it is assumed that the action density is a function only of the components Lij  of the 
generalized Ricci tensor. The field equations then include terms involving the 4-potentials 
and the equations satisfied by the potentials themselves are of the Proca type. In  $ 2 the 
theory is developed for a more general action density 3 which is a function of Lij and a 
4-potential Ai. Although Einstein’s equations are included as a special case, more 
interesting conclusions are reached in the general case by regarding the terms which 
depend explicitly on A, as charge-current vectors, which are sources of the fields. In  $ 3  
it is shown that the equations give a generalization of Mie’s theory of the electromagnetic 
field (Mie 1912, 1913, Weyl 1950, Pauli 1958). 

The  metric tensor used in $ 3 to find the connection with Mie’s theory is the usual 
tensor g l j ,  which is defined through partial derivatives of the action density (Schrodinger 
1943). In  $ 4 an alternative description of the field equations is given in a Riemannian 
space-time with metric tensor hi j ,  which is the Ricci tensor of gi j .  It is thus found that 
a special action density ‘ill leads to a generalization of R/Iaxwell’s equations. An equivalent 
description of the equations for this case, with gil as the metric tensor, leads to a generaliza- 
tion of Born and Infeld‘s electrodynamics. The  Born-Infeld generalization was first 
obtained by Schriidinger (1943), and has also been considered by Cornish (1962), who 
expressed doubt about the validity of Schrodinger’s method of deriving the equations, 
because he did not determine the form of ‘U. I t  was shown by Leopold-George (1965) 
that a simple form of ‘ill existed which led to Schrodinger’s equations, but it is now found 
that, in addition to obtaining Schrodinger’s equations from the variational principle, one 
obtains another different set of equations. An important matter to investigate is whether 
physical significance should be attached to solutions of both sets of equations. 
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In  the theory of Born and Infeld (1934) there were two alternative descriptions of the 
field of a charged particle. In  the one it was found that the electric field was finite at the 
particle and there was a distribution of charge throughout space which was concentrated 
near the centre of symmetry of the field, and in the other the electric field became infinite 
at the charge, and the form of the electrodynamic equations was similar to that of Mie's 
theory. I n  the generalization found from the symmetric affine theory the charges are situated 
at singularities of the fields, and the energy of the electromagnetic field is determined 
from an affine tensor density 2:. When g t j  is the metric tensor, Sf gives the energy tensor 
density associated with Mie's theory and also determines the stress energy and momentum 
tensor in Einstein's gravitational field equations, but when htj  is the metric tensor 21 has 
to be supplemented by a non-Maxwellian stress tensor in the latter equations. 

In  5 6 the static spherically symmetric field of an electron is discussed. One interpreta- 
tion of the solutions leads to the conclusion that the electron has a structure. Although 
the theory of the electron belongs to the quantum domain, it is still felt by some that 
interest attaches to a crude classical model of an electron (Rohrlich 1965). By assuming 
that the history of an electron is a world tube in space-time, which is bounded by a 
hypersurface on which some components of the fields become singular, it is found that 
the solutions of the two sets of field equations, which were discussed above, give the fields 
in the interior and exterior regions of the tube. Also the property of having a finite field 
energy, which was found for the Born electron (Born 1934)' exists in this generalized theory. 
These matters are only briefly discussed and the problem of stability is not considered. 

2. The general affine theory 
From the law of parallel displacement (1) it follows that there exists a tensor (Eisenhart 

1927) 

which has the symmetric and antisymmetric parts 

the last equation defining the antisymmetric tensor fjk. 
Let Ai be a covariant vector field in a region of space 92 and let 2l (L i j , f i j ,  Ai) be a 

scalar density which is a function of Lij ,  f i j  and AI. If R is a scalar functio; defined over 
9, which can be expressed in the form 4 In $, where 4 is a scalar density, then it is a 
consequence of the transformation properties of the rf2 (Eisenhart 1927, p. 25) that 
g?fI - Q,i  defines a covariant vector field. We wish to set up a variational principle for 
the field equations, which will also give the equality of the above two covariant vector 
fields. Let us consider the stationary principle 

where Qi is a contravariant vector density and d7 = dxl dx2 dx3 dx4, for arbitrary variations 
SI',k, SAI, SQi,  SQ, which vanish on the boundary of 9, Defining tensor and vector 
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densities g f j ,  p i f ,  ii by the equations 

and neglecting a surface integral over the boundary, we find that (6) reduces to 

together with the equations Di = 3 and 

3:f = 0 

1 A, = hrjz - a,,. 
The comma denotes partial differentiation. Substituting from equations (4) and ( 5 )  in 
(lo), carrying out some integrations and omitting surface integrals, which will be zero 
because the variations are assumed to vanish on the boundary, we find that 

and 

(15) 
i f  p , j  = i i  

where it will be noted that use has been made of the fact that the affine divergence of a 
skew symmetric contravariant tensor density is equal to the ordinary divergence. As a 
consequence of (15) the vector density j i  satisfies the equation 

(16) 
i j , i  = 0. 

When 3 is a given function of Lii, f i j  and ,4,, the gi i ,  pij, Si may be determined from 
equations (7), (8) and (9), and then tke equations (13), (14) and (15) can be solved for the 
F;k. The  procedure is straightforward and, although the solution given here is more 
general than the usual one (Eddington 1930, p. 258), it need only be given in outline. 

We associate with the affine space a line element having fundamental tensor s t j ,  which 
determines a Riemannian space-time of signature -2. The  Christoffel symbols will be 
denoted by {ik)s.  and the covariant derivative of tensors will be denoted by I followed by 
a suffix, and s will stand for the determinant Is i j / .  Then S 
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The equations (13) can then be expressed in the form 

(20) 
i gf: + sLl g l j  + sLl gi l -  stl gij + i ( j i  +P>& + h ( j j  +3j )ak  = 0. 

S 

We define the tensors q t j ,  qij by the equations 

and let 
si gi 'J t .  (22) ii = g i l j l ,  

Then the equations (20) can be solved for the Si.k by the usual method, and it is found that 

st. = 1 il i i 
3k 2 4  (qkl  I j f q j l  Ik - qikll) - 6q1m(q1mlj8k + PEmlk8j - qinqjkqlm I n) 

S S S S S S 

+ &(jj + J j ) 6 k  + $ ( j k  + Jk)6> - $ ( j l  -!F J[)qt 'qjk .  (23) 
Let U = + In( - s/ 
gij by the equations 

- q) and define the symmetric tensor g i j  and its associated tensor 

I 
gtj = e2"qij, giigik = 6,. 

Then from (21) and (24) 

and from (18), (22), (23) and (24) it is found that 

gir g ' j2 / -g  

ri'k = { 3 1 k } 8 f ~ ( j j f J j ) 6 ~ + ~ ( j k $ J k ) 6 : - B ( j , +  Jm)gimgjk (26) 
where (;k}s are the Christoffel symbols for the tensor g t j ,  Contracting i and K in (26) 

(27) 
z a  

i?Xj  
rjl = - ln l / -g+Q(j j+JI)  

and comparing (12) and (27), we have 
a 

j ,+J,  = 6A,+3 - (ZQ-lnz/-g). 
ax1 

(28) 

Since Q = 8 In 4, where C$ is a scalar density, we shall choose $ = 2//-g, so that the last 
term in (28) vanishes. There is, however, an arbitrariness in the choice of L2 which has 
the effect of permitting changes of gauge, since the Ai can be identified with the electro- 
dynamic 4-potential. From (26) we then find 

i 
r ; k  = { i , ) g  f A j 6 k  + 

Using (ll), (16) and (25), we find from (28), since the gradient term vanishes, 

Afi = 0. 
c 

When the expressions (29) are substituted in equations (4) and ( S ) ,  it is found that 

Lij = Rij + 6AiA j 

fi;; = Aj,i-Ai,j 

where Rij is the Ricci tensor formed with respect to the gij .  Also the equation 

h j , k  + f k l ,  j +fIk,l = 

is a consequence of equation (32). 
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In  Einstein's theory it is assumed that the action density is a function of Lf j ,  f i j  only, 
and then from (9), (22) and (28), Ji = 0, j ,  = 6A,. When equations (7) and (q are used 
to express Lir, pel  as functions of g,,,fel and A, the equations (15), (30), (31) and (32) give 
the field equations of the theory. 

The  inclusion of the covariant vector Ai in the action density appears to be an added 
complication, but it is shown below that the field equations (15) and (31) do not depend 
explicitly on the 4-potential Ai, except through the sources of the field ii. 

3. The relation to Mie's theory 

of the components g i j ,  f t i ,  A ,  and that 
we define I! = I!( g f j , f t l ,  Ai), a function of g t j ,  f t j ,  Ai by 

We assume that equations (7)  can be solved to give the components L,, as functions 
is expressed in terms of these quantities. Then 

(33) 

(34) 

2 = 1 UR 
2 9  t i - % *  

Using (71, (8), (9), (31) and (33) 
d 2  = $Rij dgi'+gpifdftfr+(32-6gtfAI) dAi. 

Hence, from (28) and (34), 
as 

4, = 2ag"j 

We define the tensors 

where eijkl is the fourth-order permutation tensor of weight + 1, and the invariants 

and 

(35) 

Then, since I! is a scalar density which is a function of g i j ,  fir, At,  we assume that it can 
be expressed in the form 

where 4 is an arbitrary function of F ,  G and U .  Since U is not the only invariant which can 
be formed from the A t  and the other field tensors, equation (41) does not give the most 
general form for 2. We find from (37), (40) and (41) that 

2 = 4(F1 G, U) d - g  (41) 

Using (38), (39), (41) and (42), the following identities can be proved: 
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where 

and, using equation (36) and the identities (43) and (44), 2; can be expressed in the form 

S: = - piyjr + i'Aj + i!$. (47) 

On account of equation (45) the conservation equation 

(48) 
I 

Zj,l = 0 
is satisfied. 

The  equations (15)) (16), (32), (32'), (36), (37), (45), (47) and (48) are the equations of 
Mie, generalized to include the gravitational field (subject to the restriction stated after 
equation (41)). This interpretation assumes that the fundamental tensor St3  is identified 
with g i j g  but it should be noted that the derivation of the equations given above is not 
dependent on making this assumption. 

4. The relation to Maxwell's theory 
Whereas the equations of Mie were derived from the function 52, we shall now show that 

the equations of Maxwell come directly from the action density %. A simple connection 
between the two theories can, however, only be expected to be found for vacuum fields, 
on account of the different interpretations which are given to the charge current density 
j'. 

g 

Let us define 
htj = Lij-6AiA3 - (49) 

so that, from (31), hij will be the Ricci tensor formed with respect togi3! when the stationary 
principle (6) is satisfied. Also, by expressing Lij as a function of hij, A i  in the action density, 
we obtain a new function E, = b(hij,fii, Ai), ;here 

'a = JAh'j7hj9 Ai). (50) 

(51) 

From (7), (8), (9), (49) and (50) me find 

dE) = ig i fdh .  t j  -1 2p ijdf tj+(6Qf'Aj-.Y) dA, 

and hence, from (28) and (50), when L2 = 4 ln(2/-g) 

The  tensor density Si, defined by (46), can therefore be expressed in the form 

by use of (35), (49)) (50) and (52), provided the equations (31) are satisfied. 
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Let us define the tensors 
1 

f*ij = 4 ei5k1fkl 2/-h (56) 

P = 4 f i j f i j ,  Q = if*'3'fij (57) 
v = &hifA,Aj (58) 

E, #(p' Q ,  v) d - h .  (59)  

f i ,  = hilhjm f t m ,  

and the invariants 

and assume that lj can be expressed in the form 

Since v is not the only invariant which can be formed from the Ai and the other field 
tensors, (59) is not the most general form for lj. 

We find from (54)' (58) and (59) 

and, since i t  is then independent of the antisymmetric fieldf,,, except through the invariants 
P and Q, it must be different in this case from the value given by (42). Also we can prove 
the following identities by use of (56), (57), (58) and (59): 

+ jiAj-l*lA 41 z 8' j *  (62) 
By using these identities to transform the expression for 2: in ( 5 5 ) ,  we find 

1 
2j = @;+ti 

where 

We shall assume that hij  is the metric tensor. The  Einstein tensor in equation (45) 
is not, in general, equal to the Einstein tensor formed with respect to hi,. It differs by 
terms involving first and second derivatives of fi,, and consequently 2: is not the whole 
of the stress-energy-momentum density in Einstein's field equations. 

In a vacuum region, where j i  = 0, there exists a class of functions lj for which 
1 

Sjjl = 0 .  
h 

Expressing the Christoffel symbols {;k}g in terms of the symbols ( t k ) h ,  by use of equa- 
tions (18), (23) and (26), we find that 

The  last step makes use of equation (45) and depends on the definition of Sf in terms of 
partial derivatives of 2. Since charge-current vectors j i  represented by (60) cannot, in 
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general, also be represented by (42), we make the restriction j i  = 0, so that 2 and Ij are 
independent of U and a, respectively. The  condition (66) is then satisfied provided 

g"him = 4 C d - h  (68) 
where C is a constant. From equations (52), (61) and (68) 

ab b=C2/-h+4frm-  
ah m 

which has the general solution 

where x(P/Q) is an arbitrary function of its argument. We consider the case when E, is 
a function of P only and take 

From (53) and (71) 
$ = (1 -4P) 2/-h.  (71) 

. .  . .  
pi3 = f i j  2 / - h  

and from (15) and (72) 
- - ( f "2 / -h)  a = 0. 
dxJ 

Also from (63), (64), (65) and (71) 

(72) 

(73) 

and 

(5; = ( -f'yjl+ tfimfimS:) 2/ - h. (75) 
The equations (32), (66), (73), (74) and (75) are the generalized form of Maxwell's vacuum 
equations. They need to be supplemented by the gravitational equations, but these are 
not given here. 

From equations (52) and (71), if we write (5; = E; d - h ,  

gii = hff(6: - E;) 1/ - h 

and from equations (30) and (76) 

(77)  
t i  A f l i ( S j - E j )  = 0 

h 

where AB = hi"Aj. This condition replaces the usual Lorentz condition. 

5. The generalization of the Born-Infeld theory 
We consider the variational principle of § 2 and express the field equations in terms of 

the field variables g t 3 , f i j .  Thus the sources of the fields are assumed to be at singular 
events outside 9, and, from equation (54), Ej is not explicitly dependent on A,. By equating 
the square roots of the determinants of each side of (76), we find 

d - g  = N 2  2/ -h  
where 

and 

From (76) and (78) 

N 2  = ~ ( 1  -$P2 - Q2) 

E = + 1 if P2+4Q2 < 4 
E = -1 if Pz+4Q2 > 4 ,  

(78) 

(79) 
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and in consequence of the identity 

we find 

gt, = E M $  + -GI. 
Also from (39), (56) and (81) 

F = [P(( 1 + 
G = Q N - 2 .  

+ Q2) + 4Q2]N-4 

Defining 

we find that 
w = (1 + 2 F - 4 G y 2  

w = (( 1 + *P)2 + Q2)N- 

and hence, from (78), (79) and (87), 

( ~ + ~ ) 2 / - g  =2(1++P)1/-h.  (88) 

(89) 

Rtj = w-l{f,,F:+&(I +EW)g,j) (90) 

We can now derive 9, from (33), (71), (76) and (88), in the form 

2 = -&(eo+<) 2/ -g  = +((1+2F-4G2)1'2+e) 2/-g 

and we derive the field equations from (89) by use of (15), (31), (35), (36) and (49), in the 
forms 

1 
(92) $3' = (p - 2Gptl)  - 

w 
where p t j  = p i j  4 - g .  

The equations (32), (90), (91), (92) are twenty-six equations for the twenty-six field 
variables gii, f i r ,  pi', A,. In addition, A t  satisfies the Lorentz condition (30). We convert 
them to gramme-centimetre units (g.c.u.), with the velocity of light unity, in a local frame 
such that gii has values ( - 1, - 1, - 1, + 1). Let Ro be a standard length and 6 a standard 
of electric field strength in g.c.u., and transform the coordinates and the field variables 
thus : 

It will be assumed that xl,fti, Ai and derived quantities, such as F and G, are all measured 
in the new units, but that gir,  Air have the same values as in natura1 units, The constant 6 
is identified with Born's constant b = e/a2, where e is the magnitude of the charge of an 
electron in g.c.u. and a is a length of the order of magnitude of the 'electron radius'. (In 
c.g.s. units we should have Born's radius a = e2/wc2, where c is the velocity of light). 

The equations (90) can now be written 

( -  R;++RS:) 2 / - g  = Sny'43; 
where 

and 

RO2b2 1 
2: = - [-F'lfjl+{F+b2(1 +EW)S:}]  2 / - g  

47Tw 9: = 7 

(94) 

(95) 

y-' = 4b2R02 (961 
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y is the gravitational constant in g.c.u. and is equal to c - ~ + ,  where 9 is the value in c.g.s. 
units. The  equation (91) is unchanged and (92) can be written 

In  a local coordinate system the components of the antisymmetric tensors can be expressed 
in terms of the usual space vectors ( B ,  E) ,  (H,  D)  according to the following scheme: 

(99) 
( f 2 3 ,  f 3 1 ,  f 1 2 )  -t B ,  ( f 1 4 ,  f 2 4 ,  f 3 4 )  + E 

( P Z 3 ,  P 3 l ,  P I 2 )  --f H ,  (p41, p 4 2 ,  p 4 3 )  -+ D .  
In  the case when E = - 1 the equations (32), (91) and (94)-(99) give the generalization 

of the Born-Infeld theory obtained previously (Gilbert 1964) from a theory based on a 
semi-symmetric connection. The  equations differ from those obtained by Schrodinger 
(1943) only by the omission of terms depending explicitly on the Ai in equations (91) and 
(94). We should have obtained Schrodinger’s equations if we had defined hi j  equal to 
Lij  instead of by equation (49), which makes it equal to the Ricci tensor Rij. 

6. The static spherically symmetric field of an electron 
A solution of equations (32), (91) and (94)-(98), representing the field of an electron, 

was found by Schrodinger (1944), in the case E = - 1, and there is no essential difference 
in the method of solution for E = + 1. Both cases are considered below. 

- 

The  metric of space-time, defined by the tensor gi j ,  is assumed to have the form 

ds2 = ev dt2 - eh dr2 - y2 do2 - y2 sin26 dp2 (100) 
and pi)’ is assumed to have only the two non-vanishing components p 4 I  and p 1 4 .  The solu- 
tion can then be written 

e 
f 4 1  = -f14 = ( a 4 + y 4 ) 1 ; 2  

where M is an arbitrary constant and 
dr So (a4 +y4)1,2* 

m(r) = 3b2(r(u4 + r4)1’2 - r3 )  + 8a4b2 

When r becomes infinite, m(r) has the value 

When E = - 1, M = 0 the value of ev always differs from unity by less than and 
the maximum departure occurs at the origin, where there is a singularity (Schrodinger 
1944). The  gravitational mass m can be shown to be equal to the field energy given by 

where d ~ ( ~ )  = dr  d6 d+ and the integral is taken throughout the region 0 < r < CO, 

0 < 6 < nl, 0 < 4 < 2nl. A contribution $m comes from the term (5: and am from the 
term tf in equation (63). It has been shown by Leopold-George (1965) that such an 
electron will respond to the influence of external fields in accordance with classical theory. 
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It can be shown that the conditions (80) place no restrictions on the values of r for 
which the solutions with E = -1 and E = +1 are valid. Thus, from the same action 
density IJ, the two different solutions given by equations (101)-(103) are obtained in the 
same region of space-time. A possible interpretation is that these solutions give the field 
of an electron under different external conditions. When E = + 1, the gij field is singular 
when I N d 3 R 0  as well as at r = 0, and accordingly one should assume that there will 
be a spherically symmetric distribution of charge of total amount e at distance I N y'3Ro 
from the electron of charge -e. From equation (96) it is found that R, II lo8 cm. 
-4 more interesting interpretation is that the fields occur in the interior and exterior of 

a world tube, which gives the history of an electron having structure, but that they have 
been described above in an unsuitable coordinate system. We choose a new coordinate p 
in the radial direction, defined by 

p2 = $ ( ( U 4  + Y4)1'2 + E?} (107) 
so that the regions for which 0 < 0 < 711, 0 < + < 2ni, r > 0 and 0 < 0 < 711, 0 < 4 < 2n, 
0 < r < ro ,  where Y, 2: 2/3R0, are mapped onto regions having the same ranges of 0, 
+, but with 0 < p < a i d 2  and a i d 2  < p < ro,  respectively. We consider the fields in 
terms of the coordinates (p ,  0 , 4 ,  t )  for the theories of Mie and Maxwell, and, for simplicity, 
we neglect the effect of the gravitational field by assuming Ro  -t CO, so that y = 0 and 
ro + CO. (In a universe with non-vanishing y one must assume that the influence of external 
fields will prevent the singularity from developing at p = ro.)  Then we find, from (101), 
( 1 0 2 )  and (103)) for Mie's theory 

ee(e(p4 - 4a4)}li2 
j '41  = - f14  = - 

P4 
Let us consider the interpretation of these solutions in terms of the sources of the 

fields which are situated outside W. From either the pij, or the f fields and the corres- 
ponding divergence equations (15) and (73), we can conclude by use of Gauss's theorem 
that, at any time, there is a charge + e  at the origin of the spatial coordinates, and a charge 
-2e distributed over the spherical surface p = a / 4 2 .  Since has been defined inde- 
pendently of the metric, the energy calculated from (106) is the same in both theories, 
and the energy of the interior field equals that of the exterior field and has the value m. 

The tensor gij determines only a flat space-time in W ,  but the singular nature of the 
field at p = a i d 2  can be demonstrated by calculating the scalar curvature R before the 
limit R, --f CO is taken. I t  is found for the spherically symmetric field given by (101) 
and (103), by use of equations (90), (93) and (107), that the value in g.c.u. is 

4 
eRO2(1 -a8/16p8) 

R =  

Therefore R is singular at p = a / 2 / 2 .  
For p < a/+! the metric of gij can be transformed into the metric of special relativity, 

but with the metric of hij there are changes of the space-like and time-like characters of 
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intervals corresponding to displacements in the radial and the time directions. When one 
also takes into account the fact that the energy tensor in Einstein’s field equations is the 
Mie tensor (47)) the theory of gravitation and electromagnetism is found to have its 
simplest form in the Einstein-Mie theory of $ 3 ,  but it has not been shown that, in general, 
a suitable action density can be found. 
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